#include "include/math_helper.h" bool onSegment(vec2f p, vec2f q, vec2f r) { if (q.x <= max(p.x, r.x) && q.x >= min(p.x, r.x) && q.y <= max(p.y, r.y) && q.y >= min(p.y, r.y)) return true; return false; } int orientation(vec2f p, vec2f q, vec2f r) { int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); if (val == 0) return 0; // collinear return (val > 0)? 1: 2; // clock or counterclock wise } bool lines_intersect(vec2f p1, vec2f q1, vec2f p2, vec2f q2) { int o1 = orientation(p1, q1, p2); int o2 = orientation(p1, q1, q2); int o3 = orientation(p2, q2, p1); int o4 = orientation(p2, q2, q1); // General case if (o1 != o2 && o3 != o4) return true; // Special Cases // p1, q1 and p2 are collinear and p2 lies on segment p1q1 if (o1 == 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on segment p1q1 if (o2 == 0 && onSegment(p1, q2, q1)) return true; // p2, q2 and p1 are collinear and p1 lies on segment p2q2 if (o3 == 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on segment p2q2 if (o4 == 0 && onSegment(p2, q1, q2)) return true; return false; // Doesn't fall in any of the above cases } vec2f get_intersection_point(vec2f A, vec2f B, vec2f C, vec2f D) { // Line AB represented as a1x + b1y = c1 double a1 = B.y - A.y; double b1 = A.x - B.x; double c1 = a1*(A.x) + b1*(A.y); // Line CD represented as a2x + b2y = c2 double a2 = D.y - C.y; double b2 = C.x - D.x; double c2 = a2*(C.x)+ b2*(C.y); double determinant = a1*b2 - a2*b1; if (determinant == 0) { // The lines are parallel. This is simplified // by returning a pair of FLT_MAX return (vec2f){__FLT_MAX__, __FLT_MAX__}; } else { double x = (b2*c1 - b1*c2)/determinant; double y = (a1*c2 - a2*c1)/determinant; return (vec2f){x, y}; } } box get_box_of_square(platform_window* window, vec3f position, vec3f size) { map_info info = get_map_info(window); vec2f rendertl = (vec2f){position.x, position.y}; vec2f rendertr = (vec2f){position.x + size.x, position.y}; vec2f renderbr = (vec2f){position.x + size.x, position.y + size.y}; vec2f renderbl = (vec2f){position.x, position.y + size.y}; return (box){rendertl, rendertr, renderbl, renderbr, rendertl, rendertr, renderbl, renderbr}; } box get_render_box_of_square(platform_window* window, vec3f position, vec3f size) { map_info info = get_map_info(window); float render_x = (info.tile_width * position.x) + (info.px_incline * position.y); vec2f rendertl = (vec2f){render_x, info.tile_width * position.y - position.z*info.px_raised_per_h}; vec2f rendertr = (vec2f){render_x + info.tile_width*size.x, info.tile_height * position.y - position.z*info.px_raised_per_h}; vec2f renderbr = (vec2f){render_x + (info.px_incline+info.tile_width)*size.x, info.tile_height * position.y + info.tile_height*size.y - position.z*info.px_raised_per_h}; vec2f renderbl = (vec2f){render_x + info.px_incline*size.x, info.tile_height * position.y + info.tile_height*size.y - position.z*info.px_raised_per_h}; position.z += size.z; vec2f rendertl2 = (vec2f){render_x, info.tile_width * position.y - position.z*info.px_raised_per_h}; vec2f rendertr2 = (vec2f){render_x + info.tile_width*size.x, info.tile_height * position.y - position.z*info.px_raised_per_h}; vec2f renderbr2 = (vec2f){render_x + (info.px_incline+info.tile_width)*size.x, info.tile_height * position.y + info.tile_height*size.y - position.z*info.px_raised_per_h}; vec2f renderbl2 = (vec2f){render_x + info.px_incline*size.x, info.tile_height * position.y + info.tile_height*size.y - position.z*info.px_raised_per_h}; return (box){rendertl, rendertr, renderbl, renderbr, rendertl2, rendertr2, renderbl2, renderbr2}; }